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A method is described for the numerical solution of hyperbolic systems of conservation laws 
in one space dimension. The basis of the scheme is to use finite differences where the solution 
is smooth and the method of characteristics where the solution is not smooth. The method 
can accurately represent shocks. Results are presented for the solution of the equations of gas 
dynamics. The examples illustrate the accuracy of the method when discontinuities are present 
and the code’s performance on difftcult problems of interacting shocks and shock formation. 
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1. INTRODUCTION 

We consider the numerical solution of hyperbolic systems of conservation laws. 
Such problems can be difficult to solve numerically since the solutions can exhibit 
discontinuities. However, there are many problems which can be cast into this form 
and thus it is of some importance to develop good numerical schemes. The 
approach taken here is to use a hybrid method which combines finite difference 
methods with the method of characteristics. Finite differences are easy to implement 
and accurate when the numerical solution is smooth. The method of characteristics 
is more difficult to implement but is accurate when there are discontinuities present. 
The idea is to combine the methods, using finite differences where the solution is 
smooth and using the method of characteristics otherwise. The finite difference 
method is applied on a fixed grid. The method of characteristics is used on points 
which move through the fixed grid. The position and number of these characteri.~tic 
points may vary with time. Shocks appear as perfect discontinuities. They are 
recognized by the crossing of characteristics and are fitted using the shock relations. 
Interactions between different shocks are handled in a uniform manner by the use 
of a Riemann solver. 

The method described here is a generalized shock tracking approach. The basics 
of shock tracking is described in Richtmyer and Morton [lo]. Applications of 
shock tracking in one and two space dimensions are described in Glimm et al. [ 11, 
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DeNeef and Hechtman [3], Liitstedt [9], Salas [ll], and Zhu et ul. [ 151, among 
others. 

1.1. Background 

A system of hyperbolic conservation laws in one space dimension can be written 
in the form 

u,+f(u).=O. (1.1) 

Here u: Iw x [0, co) + R” is a vector with m components, each component being a 
real valued function of x and t. f is called the flux function, f: R” -+ KY’. The trans- 
pose of a vector u will be denoted as uT. The system ( 1.1) is said to be hyperbolic if 
the eigenvalues { ci(u)};!, of the Jacobian matrix 

J(u)=f,= g i 1 I 
are real and there is a complete set of eigenvectors. It will be assumed here that the 
eigenvalues are distinct and can be ordered 

c,<cz<c,< ... -cc,,. 

Let a,(u) denote the left eigenvector of J corresponding to the eigenvalue ci, 
aTJ= c,aT. Multiplying the conservation equation (1.1) by a,(u)’ and using the 
eigenvalue equation gives 

4 at 
[ 
%;(u,g =o. 

1 

Each of these equations reduces to an ordinary differential equation along the 
characteristic curve Cj whose slope in x - t space is c;(u), 

du 
a:-=0 

dt 
along C,: g= c,(u), i = 1, 2 )...) nz. 

These are known as the characteristic equations. 
If f is a nonlinear function of u then in general classical solutions to the initial 

value problem do not exist for all time; see for example Whitham [ 141. Derivatives 
of u can become infinite in a finite time even for smooth initial data. Often systems 
such as (1.1) describe the limiting behaviour of a physical process as some 
parameter goes to zero. For example, the equations of gas dynamics to be discussed 
later are the limiting equations as the effects of viscosity and heat conduction go to 
zero. The breakdown of the solution may then be related to the breakdown of some 
of the assumptions under which the equations were derived. To obtain the 
physically meaningful solution one could solve a new set of equations which 
includes those effects that are now important. For example, one often really wants 
the solution to a related viscous problem 

ut + f(u), = G(u) u,).,, B(u) 3 0 
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as the viscosity E tends to zero. Solving these equations accurately can be much 
more work since one must resolve the shocks. In many cases the structure through 
the shock is not required. As an alternative it is possible to patch up the current set 
of equations by extending the notion of what is meant by a solution. This is done 
by allowing the solution to have discontinuities. At a propagating discontinuity, on 
either side of which the solution is continuously differentiable, one can appeal to 
the integral form of the conservation laws to obtain the equations which describe 
how the discontinuity or shock is to be propagated. These are the Rankinee 
Hugoniot shock relations 

[f(h) -f(k)1 = UC% - ULI. (1.3) 

U is the speed of propagation of the discontinuity. uR and uL are the states to the 
right and left of the shock. One way to mathematically define a solution to (1.1) 
which allows for discontinuities is to introduce the concept of a generalized 
solution. We call u a generalized or weak solution of the system (1.1) with initial 
conditions u(x, 0) = uO(x) if for all smooth test functions 4(x, t’) of compact support 

s l ,I, :1, Cud,+f(u)d,l dxdf-lx uo(x) 4(x, 0) d.x = 0. (1.4) y=-x 

This expression can be formally obtained in the following manner. Multiply the 
conservation equation (1.1) by 4 and integrate over time and space. Integrate by 
parts to remove the derivatives from u and f and place them onto 4. This gives 
Eq. (1.4). Any classical solution of the conservation equation will thus be a 
generalized solution. The converse of this statement is not true. Having extended 
the solution space in this manner we run into the trouble that too many solutions 
are now allowed. We must use other criteria to determine which weak solution is 
the physically relevant one. This extra condition is called the entropy condition. For 
our purposes the entropy condition is simply the geometrical statement that the 
characteristics on either side of the discontinuity must run into (and not out of) the 
discontinuity. This means that for some indexj 

C/(UJ > u> Cj(UR). (1.5) 

We further require that not too many characteristics run into the discontinuity so 
that 

cj(uL)> u>cj-l(uL) (1.6) 

and 

cj+ L(h) > u> Cj(Ud (1.7) 

These conditions ensure that there are the correct number of equations to deter- 
mine the evolution of the discontinuity. A propagating discontinuity satisfying the 
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entropy conditions (lSt(1.7) will be called a shock. If a discontinuity satisfies 
(1.5)-( 1.7) with the inequalities in (1.5) replaced by equalities then it is called a con- 
tact discontinuity. There are alternative ways to define an entropy condition in 
terms of an entropy function (Lax [8]). 

An important class of problems are those where the initial conditions consist of 
two constant states separated by a jump 

u(x, O)= 1 ::, 
(constant) x < 0 
(constant) x > 0. 

These are known as Riemann problems. For many hyperbolic systems of interest 
the solution to the Riemann problem can be found. There are methods which are 
based upon the solution of the Riemann problem. These include Godunov’s method 
[S] and Glimm’s random choice method [4], among others. The method described 
in this paper also assumes that one can solve the Riemann problem. This 
knowledge is needed to handle the interaction of discontinuities. 

These are a number of good references for further details of the material presen- 
ted here, for example, Lax [S] and Whitham [14]. 

2. DESCRIPTION OF THE SCHEME 

The basic idea of the scheme has already been outlined in the Introduction. In 
this section we proceed to give a more complete description. In Section 2.1 the 
structure of the computational grid is discussed. By computational grid we refer to 
an underlying fixed grid together with extra grid points, called characteristic points. 
The number and positions of these extra points varies with time. The concept of a 
group of characteristic points is introduced and explained. Later sections describe 
how these groups of points are advanced in time. This involves a discussion of the 
method of characteristics, shock fitting, shock interactions and the Riemann 
problem. 

2.1. Grid Structure 

The computational grid is comprised of two types of grid points. First there are 
points which lie on a fixed grid. These points will be denoted by xi and the 
corresponding solution values by u(i). For simplicity this grid is taken to have a 
constant mesh spacing h so that xi+, = xi + h. In addition to this uniform mesh 
there are also some extra points which move through the fixed grid as the solution 
develops. These extra points will be called characteristic points since they will be the 
points where the method of characteristics is applied. They will be located in 
regions where the solution is not smooth such as around discontinuities. Denote 
their positions by x,.(i). The solution value a x,(i) will be called u,.(i). The charac- 
teristic points are not restricted to lie on any grid. Their positions are variable. In 
fact, when a shock develops two characteristic points will occupy the same location. 
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One of these points will carry the information for the state to the left of the shock 
and the other holds the state to the right of the shock. This allows shocks to be 
represented as true discontinuities. Figure 1 shows what the computational grid and 
a component of the solution might look like. The solution is the shock tube example 
of Section 4.5 and consists of two discontinuities, a shock to the right and a contact 
discontinuity in the center. There is an expansion fan to the left. The characteristic 
points and their solution values are marked with circles. Notice that there are two 
characteristic points located at the position of the shock and at the position the 
contact discontinuity. 

Much of the complexity of the method is associated with the problem of keeping 
track of the characteristic points as they move through the fixed grid. Here is an 
outline of how this problem was resolved. Characteristic points will tend to cluster 
in certain locations, such as around shocks or around discontinuities in the first 
derivative. (In Fig. 1 there is a discontinuity in the first derivative at the edge of the 
expansion fan.) Such a cluster of characteristic points will be identified as a logical 
entity and will be called a group. Each group is separated from other groups by a 
smooth portion of the solution. Let gj denote the ith group. It consists of a number 
of characteristic points 

g;= {xf,(j)j= l,...) q}. 

A superscript i has been added to the characteristic point to denote that it belongs 
to group i. The smallest and largest values of x:,(j) in any group define the extent of 
the group. Fixed grid points which lie underneath a group, that is within the extent 
of the group, will not be used. Such points will be called inactive, as opposed to 

.3 

/ 

Characteristic point 0 
.* Fixed grid point * 

0 .I .z .3 .4 .5 .6 .7 .8 .9 I.0 
x 

FIG. 1. Grid structure. 
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active fixed grid points which lie under no group. In Fig. 1 there are three groups, 
one around the shock, a second at the contact and the third around the corner of 
the expansion fan. 

To advance the solution from one time step to the next the method of charac- 
teristics is applied to each group separately. Solution values outside the extent of 
the group may be needed. These can be obtained from neighbouring points on the 
fixed grid. The numerical implementation of the method of characteristics is 
described in Section 2.3. The fixed grid points are advanced using a finite difference 
method which is described in Section 2.2. The computational grid is monitored to 
make sure that all groups and all active fixed grid points satisfy certain conditions. 
The groups can be constantly changing in size and position. The following lists 
some of the operations that may be applied to a group or pair of groups. 

(i) Merging-if two groups are too close together they are joined to form 
one new and larger group. 

(ii) Splitting-if there is a smooth region in the interior of a group, the 
group is separated into two groups. Points on the fixed grid which lie in this 
smooth region become active points. 

(iii) Liquidation-groups may disappear if the solution becomes smooth at 
all the points which make up the group. 

(iv) Trimming-if there is a smooth region on the end of a group charac- 
teristic points will be taken away. 

(v) Addition-Two adjacent characteristic points in a group are not allowed 
to get too far apart. Extra points may be added to prevent this from happening. 

(vi) Creation-when the solution on the fixed grid becomes rough a new 
group may form. (Described in more detail below.) 

New groups may appear spontaneously when the solution becomes rough. The 
smoothness of the solution on the fixed grid is measured by a normalized second 
undivided difference quotient. A point i on the fixed grid will become the location of 
a new characteristic point if 

max l”jCxi+ I) -2uj(xi) + uj(xi~ I )I ,a. 
IlUjll 

(2.1) 
I<l<rn 

Here 6 is a predetermined constant which will depend on h. uj(xi) is the jth com- 
ponent of the solution at position xi of the fixed grid and llu,ll is a global measure of 
the size of the jth component of the solution. The left hand side of (2.1) will be 
O(h2) where the numerical solution is smooth with respect to the grid. If this quan- 
tity becomes large compared to h2 then the finite difference method is likely losing 
accuracy and it is time to switch to the method of characteristics. The measure that 
one uses should be related to the accuracy of the finite difference method which is 
being used. A similar measure to (2.1) is used to determine when the numerical 
solution within a group is becoming smooth. 



SHOCK CALCULATIONS 31 

Programming is considerably simplified when the correct data structures are 
used. The data structure for holding the groups is straightforward in nature, con- 
sisting of pointers and lists. It is convenient to keep the characteristic points 
ordered by their position so that neighbours are easily found. A useful array to 
have, which simplifies many group operations, is one which indicates the status of 
each point on the fixed grid. The status will indicate whether the point is active or 
not and for inactive points will indicate which group it lies underneath of. Denoting 
this array by istatus( say, then 

istatus = 
0 if fixed grid point i is an active point 
k if point i is inactive and sits below group k. 

Using this array it is easy to check whether two groups are getting close together. 
Groups are merged when they are less than a few mesh widths apart. In addition 
the array acts a system of pointers from the fixed grid to the data structure contain- 
ing the groups. 

2.2. The Finite Difference Equations 

The numerical solution on the fixed grid is advanced using a finite difference 
method. The method that is used is the second order Lax-Wendroff scheme. Other 
difference schemes could be used. Since the scheme is only applied where the 
solution is smooth, higher order methods might prove to be useful. 

2.3. Solving the Characteristic Equations 

In this section we discuss the numerical solution of the characteristic equations 
which were derived in Section 1 .l. 

du a:-=0 
dt 

along Ci: $ = cj(u), i = 1 , 2 ,..., m. 

These equations are a coupled system of nonlinear ordinary differential equations. 
The system is not, however, in the standard form dy/dx = f(x, y). Each charac- 
teristic equation only holds upon a curve whose position depends upon the 
solution. Given the solution u everywhere at time t the objective is to calculate the 
solution u for a particular point (x, t + At). In the simplest case, when there are no 
shocks, there will be precisely m characteristic curves which intersect the point 
(x, t + At). These characeristics emanate from some (unknown) points (xi, t). The 
m characteristics carry enough information to determine the m unknown com- 
ponents of u(x, t + At). 

To solve the equations numerically we proceed as follows. Suppose we know an 
approximation to the solution at all grid points at time t. Let v(x, t) denote the 
function which equals this solution at each grid point and varies linearly in 
between. Consider the task of determining the solution at some point z at time 

581!68/1-3 
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t T 
z v(z.t+At) 

t+At -.. -.. -. ....- .. 

FIG. 2. Solving the characteristic equations. 

t + At by the method of characteristics (see Fig. 2). To do this the following second 
order implicit approximation to the characteristic equations is solved, 

a,($(v(z, t + At) + v(x,, t)))T(~(z, t + At) - v(x,, t)) = 0, 
i = 1, 2 ,..., m. 

z-x; = c,(f(v(z, t + At) + v(x;, t))) At, 
(2.2) 

There are 2m equations for the 2m unknowns 

v(z, t + At) 
xi, 

m unknowns 
i = 1 , 2 ,..., m. 

These nonlinear equations are solved by a quasi-Newton iteration. The convergence 
of this iteration was considered in Henshaw [6]. 

In practice we may also want to solve the same equations when the initial 
position xi of one of the characteristics is known and z is unknown. 

As mentioned previously, each group of characteristic points is advanced as a 
unit. The steps to advance a group to the next time level (once shocks have been lit- 
ted) are as follows: 

(i) Calculate v(z, t + At) as outlined above where z lies at the end of the jth 
characteristic curve which begins from a given characteristic point. Do this for each 
characteristic (j = 1, 2,..., m) and for each point in the group. 

(ii) Each characteristic point at time t has spawned m new points at time 
t + At. These points are not all kept; points are removed where the solution is 
smoothest. 

3. DISCONTINUITIES 

The solutions to hyperbolic systems of conservation laws can possess discon- 
tinuities. These may be present from time zero if the initial conditions contain 
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jumps. The discontinuities may also develop in time if the system is nonlinear. Dis- 
continuities are treated in a special manner by the program. 

Consider an isolated discontinuity which is propagating through the flow. The 
states on either side of the discontinuity are assumed to be smooth. The speed of 
the discontinuity, U, is then given by the jump conditions 

V(h) - f(k)1 = w-h - ULI. 

The discontinuity is assumed to satisfy the entropy condition. This condition was 
given in Section 1.1. In words the entropy condition states that there is one and 
only one extra characteristic running into the discontinuity. We will usually call a 
discontinuity which satisfies the jump conditions and the entropy condition a shock. 
The numerical procedure for advancing a shock (shock fitting) is described in Sec- 
tion 3.1. We will see that the jump conditions and the one extra characteristic 
equation provide enough equations to determine the shock speed and the states to 
the left and right of the shock. 

Another type of discontinuity can exist at a given point in time. This discon- 
tinuity does not satisfy the jump conditions. It may arise in initial conditions or 
when two shocks collide. In order to determine the solution at the next time level a 
more general Riemann problem is solved. The discontinuity will then be resolved 
into shocks and expansion fans. 

Before the characteristic points are advanced to the next time level, the group is 
first scanned for the existence of shocks. Shocks are indicated by the crossing of two 
characteristics of the samefamily, that is lying on the same numbered characteristic. 
The program considers two cases when characteristics are found to cross. 

(i) Most often the crossing has occurred where a shock has been previously 
fitted. In this case the states on either side wil not be arbitrary but will satisfy the 
shock relations 

iIf(UR) - f(h)1 = wu, - ULI. 

Actually since the shock velocity U is not known, the ratios of the jump infi to the 
jump in U, are checked to see if they are the same. This also gives a good initial 
guess for U. The procedure for determining the position of the shock at the next 
time level is described in the next section. 

(ii) If the conditions of (i) are not satisfied the discontinuity is not a shock. A 
Riemann problem can be solved to determine the solution at the next time step. A 
numerical technique for the solution of a general class of Riemann problems is dis- 
cussed in Section 3.3. 

3.1. Fitting a Single Shock 

The shock fitting problem requires the determination of the states to the left and 
right of the shock at the next time level as well as the shock speed. The appropriate 
characteristic equations to use in determining these values are those which corres- 
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pond to the characteristic curves which do not cross the shock. Hence for a shock 
occurring on the characteristic family k (called a k-shock) there will be equations 
for characteristics 1 to k coming from the right of the shock and equations for 
characteristics k to m coming from the left of the shock (see Fig. 3). 

There are 3m + 2 unknowns 

uL, “R states to the left and right of the shock 

u shock velocity 

syI ,..., xk, yk ,..., y, initial positions of the characteristics. 

The 3m + 2 equations which must be solved are 

a!(t(uR+v(x!, f)))T(UR-v(-x!T r))=O, i= 1, 2,.... k (3.1) 

aj(t(uL + v(Y;, t)))T(~L - v(.r,, t)) = 0, i= k, k + I,..., m (3.2) 

[f(uR) - f(“L)l - u[“R - uL1 = o (m equations) (3.3) 

x,~-- x, = c;(f(uR + v(x;, t))) At, i= 1, 2,..., k (3.4) 

x,~ -y;= ci(;(uL + v(y,, t))) At, i = k, k + 1, . . . . m. (3.5) 

The position of the shock at t + At is x,, 

x,=x:+$[U+ U”‘] At. 

In this last equation XT is the shock position at time t and U”’ is the shock velocity 
at time t. U(O) can be determined from the jump conditions. These equations are 
solved by a quasi-Newton method; by which to say that only the first 2m + 1 
equations and variables are used in the Newton step. The variables xi and .Y, are 
updated after each Newton step from the equations which describe the position of 
the characteristic. This was done for simplicity. 

t 
T X, 

t+At 

Ym s-o Yk XII DDD x2 x1 x 

FIG. 3. Shock fitting. 
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3.2. Shock Interactions 

The shock relations describe how isolated discontinuities propagate. However, 
this information does not yet completely specify the solution. For what happens 
when two shocks merge or collide? Further details must be given to indicate how 
the interactions between discontinuities are to be handled. Below we describe the 
manner in which shock interactions proceed. 

Consider the situation when two shocks collide (see Fig. 4). The speeds of the 
shocks are simply determined by the states immediately in front of and in back of 
each shock. The shock speeds are given by the Rankine-Hugoniot relations. The 
shocks will continue to move together until the section between them vanishes. 
Now the states on either side of this discontinuity will not in general satisfy the 
jump conditions for a shock. This problem must then be considered as a general 
Riemann problem to be solved. The solution to this Riemann problem should 
generate the appropriate shocks, contacts and fans that result from the collision. It 
is not hard to show that the scenario given above for the collision of discontinuities 
describes a weak solution to the conservation laws. 

3.3. The General Riemann Solver 

In this section a numerical procedure for solving the Riemann problem is dis- 
cussed. Efficient algorithms have been devised for specialized systems. An iteration 
procedure for the equations of gas dynamics with certain types of gas laws was 
given by Godunov [S]. Improvements and extensions of this scheme were made by, 
for example, van Leer [13] and Colella and Glaz [2]. The algorithm presented 
here applies to more general systems. It is assumed, however, that the solution is 
self-similar in the variable x/t and consists of constant states separated by shocks or 
fans (see Fig. 5). There is a good discussion of the Riemann problem in Lax [S]. 

FIG. 4. Shock interactions. 
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FIG. 5. Form of the solution to the Riemann problem. 

The scheme described here suffers from the drawback of being slower than those 
procedures which have been optimized for particular systems. 

Now consider solving the Riemann problem numerically. To each characteristic 
family i = I,..., m there will be a possible shock or fan appearing in the solution. The 
shock or fan may degenerate to zero strength. To begin with one does not know 
which characteristics lead to shocks and which to fans. This complicates matters in 
two ways. First the equations that must be solved depend on whether there is a 
shock or fan; through a fan the characteristic equations are solved while across a 
shock the Rankine-Hugoniot jump conditions hold. Second, the number of 
equations varies with the number of shocks, as will be seen shortly. Suppose for the 
moment that one knows which characteristics form shocks and which form fans. 
Let n, be the number of shocks in the solution. The unknowns to be solved for are: 

(1 ) {II”: k = I,..., m - 1 ) The constant states which separate k-waves (fan or 
shock) from (k + I )-waves. Define u” to be uL and II”’ to be uR. 

(2) {Qk- I,..., n,} The veloctttes of the shocks which occur on charac- 
teristics ik, i,E(l, 2 ,..., in). 

The equations to solve are of the form 

(1) The jump conditions across each shock (on characteristic k say) 

[f(u”+‘)-f(uk)]-&.[uk+‘-uk]=O. 

(2) The characteristic equations through each expansion fun (on charac- 
teristic k) 

ai(u)T$=o on C,, i = 1, 2,..., k - 1, k + 1 ,..., m, 

where C, is the characteristic which passes through the k-fan. A simple 
approximation to this equation is 

a,($(u”+’ + Uk))‘(U” + ’ - u”) = 0. 
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The number of equations and the number of unknowns are both equal to 
m(m - 1) + n,. In practice it was found necessary to use a more accurate formula 
for the characteristic equations which are calculated through strong expansion fans 
(since the solution changes appreciably through the fan). This is done by adding 
additional states through the fan. If there is a fan between the states ukP’ and uk 
denote the extra states by ukv, v = 1,2 ,.,., k,. The number of extra states k, is deter- 
mined by the angle of opening of the fan. The states are positioned through the fan 
along the lines 

x/t = @,,ck(Uk-‘) + (1 -a,,) ck(d), 

where CY, = v/(k, + 1) for the vth extra state. The extra equations that are solved are 

a;($,“l~+ 1 + Ukq)T(Uk, + 1 - ,,“‘.) = 0, i = 1, 2,..., k - 1, k + I,..., m 

Ck(Uk’) = a,.c,(uk- ‘) + (1 -x,,) Ck(UA). 

In these expressions we have defined 

,,hcUk-’ &,+I = Uk 

Notice that At appears nowhere in the equations. This is to be expected as the 
solution to the Riemann problem is self-similar in variable x/t. 

These equations are solved by Newton’s method. Table I gives some results for a 
particular Riemann problem. This is the problem solved in Example 1 of the fourth 
section. The solution consists of an expansion fan, a contact discontinuity, and a 
shock. There are two interior constant states. In the table the values of the density, 
momentum and energy for these constant states are given. The state between the 
fan and contact discontinuity is denoted by a subscript 2, and the state between the 
contact and the shock by a subscript 3. Results are given for 0, 1,2,3 or 4 extra 
states through the fan. 

TABLE I 

Results from the Riemann Solver 

Riemann problem 

Calculated 

True k,=O k,=l kc=2 kc=3 kc=4 

pz=.4263 .4146 .4397 .4324 .4298 .4285 
p,=.2656 .2654 .2658 .2651 .2657 .2656 

nQ=.3954 .4399 .4084 .4014 .3988 .3976 
m, =.2463 .2460 .2469 .2466 .2465 .2464 
E2=.9412 .9610 .9485 .9447 .9432 .9425 
E,=.8720 .8712 .8735 A729 .8726 .8124 
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4. COMPUTATIONAL RESULTS 

4.1. The Equations of’ Gas Dynamics 

In this section results are presented for the numerical solution of the equations of 
gas dynamics. The three components of u have the more common names of density, 
momentum and energy. 

P 

H 

p = density 

u= m m = momentum 
E E = Energy. 

The flux function f for an inviscid polytropic gas is 

m 

f(u) = / 1 m2/p+p , 

mldE+p) 

where the pressure p and velocity u are defined as 

P = (‘J - 1 NE- fm2/pl, y= 1.4 

u = m/p. 

The computer code requires expressions for the coefficients which appear in the 
characteristic equations. These can be obtained as follows. First the Jacobian 
matrix is determined. 

[ 

0 1 0 

f”(U) = f(r- 3) u* (3-Y)U y-l 

-ymE/p+ (y- l)m’/p3 yE/p-$(y- l)m2/p2 yu 
1 

The eigenvalues and left eigenvectors of this matrix can be calculated in a 
straightforward manner: 
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TABLE II 

Shock Tube Initial Conditions 

P 1.0 .125 
m 0.0 0.0 
E 2.5 .25 

The speed of sound a is defined by 

a’-g(y- l)[E/p-$u2]. 

Four examples have been chosen to illustrate the performance of the computer 
code. The first example is the solution of a Riemann problem. The second example 

FIG. 6. Shock tube-Time evolution, d[ = .Ol, n = 40, n, = 3 to 24. 
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FIG. 7. Shock tube-Comparison to exact solution ! = .2. At = .Ol, n = 40, tz, = IO. Calculated (,. .); 
exact (-). 

shows the collision of two shocks of equal strength. In these first two numerical 
tests the results are compared to the exact solution. As a third example the for- 
mation of a shock is shown. A more complicated problem of interacting shocks, 
fans and contact discontinuities is given as the final example. Examples 3 and 4 are 
compared to the results obtained using a more standard finite difference code with 
many points. 

4.2. Example 1: Shock Tube 

This first example is taken from the paper by Sod [ 121. This Riemann problem 
has become a standard test case. The initial conditions are given in Table II. 

The solution for times greater than zero consists of a shock wave travelling to the 
right followed by a contact discontinuity and a rarefaction wave. The density and 
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FIG. 8. Shock collision-Time evolution dt = .Ol, n = 30, n, = 5 to 11. 

energy (and momentum) are discontinuous across the contact, while the velocity 
and pressure are not. The time evolution of p, U, E and p is shown in Fig. 6. 
Indicated below the figure are the time step At, the number of points on the fixed 
grid n, and the number of characteristic points 12,. n, is given as a range of values. 
This range indicates the maximum and minimum number of characteristic points 
that were needed over the entire run. Initially there is only one group of charac- 
teristic points. As the discontinuities separate, the group becomes larger and the 
number of characteristic points increases. When the smooth regions in this group 
becomes large enough the group splits and the number of characteristic points 
decreases. By the final time shown there are three groups. Comparison to the exact 
solution is made at time t = 0.2 for n = 40 in Fig. 7. 
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FIG. 9. Shock collision-Comparison to exact solution f = .25, dr = .Ol, n = 30, nL = 7. Calculated 
(. .); exact (--). 

4.3. Example 2: Shock Collision 

This example was chosen to demonstrate how the program handles the collision 
of shocks. In particular we look at the collision of two shocks of equal strength 
travelling in opposite directions. The initial conditions are given in Table III. 

Figure 8 shows the numerical solution proceeding in time. A comparison is made 
with the true solution at time t = 2.5 in Fig. 9. At this time the shocks have already 
collided and are now moving apart. 

4.4. Example 3: Shock Formation 

This numerical experiment was performed to see how a smooth profile can 
steepen up to form a shock (Fig. 10). For the first few steps there are no charac- 
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FIG. 10. Shock formation-Time evolution AI = .004, n = 81, n, = 1 to 9. 

TABLE III 

Shock Collision Initial Conditions 

t=O x6.33 .33<x<.67 ~a.67 

P .2656 ,125 .2656 
m .2463 0.0 - .2463 
E .8720 .25 .8720 
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FIG. 11. Shock formation-Comparison to LW solution. Calculated (. .) / = .3, dl= ,004, n = 81, 
n,=4.LW(--)f=.3,d/=.Ol,n=401,v= 1.5. 

teristic points present. Once the shock starts to form, characteristic points are put 
in. Eventually the solution develops a jump. Many shock tracking codes would 
probably not be able to handle a shock formation problem since they require a 
priori knowledge of the positions of the shocks. The code developed here is well 
suited for this problem. 

This solution is compared to the result obtained using the Lax-Wendroff method 
on a fixed grid with 401 points (Fig. 11). Artificial viscosity of the type developed 
by Lapidus [7] is used in the Law-Wendroff solution. The value of this artificial 
viscosity is given as v. It is seen that the method accurately predicts the shock 
development. 
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FIG. 12. Shock interactions. 

FIG. 13. Shock interactions-Time evolution A? = ,005, n = 80, n, = 5 to 28. 
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TABLE IV 

Initial Conditions for Shock Interactions 

P 1.0 .125 .2656 
m 0.0 0.0 - .2463 
E 2.5 .25 .8720 

4.5. E.xample 4: Interactions 

In this final example a shock moving from the right hits the flow that is generated 
by the shock tube problem of Example 1. The initial conditions are given in 
Table IV. 

The resulting interactions of shocks and contact discontinuities are fairly com- 
plicated and are shown schematically in the x-t diagram of Fig. 12. This should be 
helpful to follow the numerical solution of Fig. 13. 

- 

X0.60 - 4 -. 
>-II.22 

L 
0.x 

t 

-0.58 

t 

X 

FIG. 14. Shock interactions-Comparison to LW Solution. Calculated (. ‘) t = .3, Af = ,005, n = 80, 
II, = 11. LW (---) I = .3, Al = ,001, n = 401, v = 1.5. 
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At the point marked (1) on the diagram the isolated shock which is moving in 
from the right side of the diagram hits the shock which began at x = 0.5 and is mov- 
ing to the right. These shocks are of equal strength. They pass through each other 
after being refracted. The one shock continues to move to the left until it hits the 
contact discontinuity at (2) on the diagram. When the shock and contact hit they 
pass through each other with some refraction. There is also weak reflected shock 
which is generated from this collision. This reflected shock moves to the right and 
catches up with the other shock at (3). 

Again the solution is compared to the result using Lax-Wendroff and a large 
number of points (Fig. 14). 
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